SSDs, power loss protection and fsync latency

🔥 Read this awesome post from Hacker News 📖

📂 **Category**:

📌 **What You’ll Learn**:

This has results to measure the impact of calling fsync (or fdatasync) per-write for files opened with O_DIRECT. My goal is to document the impact of the innodb_flush_method option. 

The primary point of this post is to document the claim:

For an SSD without power loss protection, writes are fast but fsync is slow.

The secondary point of this post is to provide yet another example where context matters when reporting performance problems. This post is motivated by results that look bad when run on a server with slow fsync but look OK otherwise. 

tl;dr

  • for my mini PCs I will switch from the Samsung 990 Pro to the Crucial T500 to get lower fsync latency. Both are nice devices but the T500 is better for my use case.
  • with a consumer SSD writes are fast but fsync is often slow
  • use an enterprise SSD if possible, if not run tests to understand fsync and fdatasync latency

Updates:

InnoDB, O_DIRECT and O_DIRECT_NO_FSYNC

When innodb_flush_method is set to O_DIRECT there are calls to fsync after each batch of writes. While  I don’t know the source like I used to, I did browse it for this blog post and then I looked at SHOW GLOBAL STATUS counters. I think that InnoDB does the following with it set to O_DIRECT: 

  1. Do one large write to the doublewrite buffer, call fsync on that file
  2. Do the batch of in-place (16kb) page writes
  3. Call fsync once per database file that was written by step 2

When set to O_DIRECT_NO_FSYNC then the frequency of calls to fsync are greatly reduced and are only done in cases where important filesystem metadata needs to be updated, such as after extending a file.  The reference manual is misleading WRT the following sentence. I don’t think that InnoDB ever does an fsync after each write. It can do an fsync after each batch of writes:

O_DIRECT_NO_FSYNCInnoDB uses O_DIRECT during flushing I/O, but skips the fsync() system call after each write operation.

Many years ago it was risky to use O_DIRECT_NO_FSYNC on some filesystems because the feature as implemented (either upstream or in forks) didn’t do fsync for cases where it was needed (see comment about metadata above). I experienced problems from this and I only have myself to blame. But the feature has been enhanced to do the right thing. And if the #whynotpostgres crowd wants to snark about MySQL not caring about data, lets not forget that InnoDB had per-page checksums long before Postgres — those checksums made web-scale life much easier when using less than stellar hardware.

The following table uses results while running the Insert Benchmark for InnoDB to compute the ratio of fsyncs per write using the SHOW GLOBAL STATUS counters:

Innodb_data_fsyncs / Innodb_data_writes

And from this table a few things are clear. First, there isn’t an fsync per write with O_DIRECT but there might be an fsync per batch of writes as explained above. Second, the rate of fsyncs is greatly reduced by using O_DIRECT_NO_FSYNC. 

5.7.44  8.0.44

.01046  .00729  O_DIRECT
.00172  .00053  O_DIRECT_NO_FSYNC

Power loss protection

I am far from an expert on this topic, but most SSDs have a write-buffer that makes small writes fast. And one way to achieve speed is to buffer those writes in RAM on the SSD while waiting for enough data to be written to an extent. But that speed means there is a risk of data loss if a server loses power. Some SSDs, especially those marketed as enterprise SSDs, have a feature called power loss protection that make data loss unlikely. Other SSDs, lets call them consumer SSDs, don’t have that feature while some of the consumer SSDs claim to make a best effort to flush writes from the write buffer on power loss.

One solution to avoiding risk is to only buy enterprise SSDs. But they are more expensive, less common, and many are larger (22120 rather than 2280) because more room is needed for the capacitor or other HW that provides the power loss protection. Note that power loss protection is often abbreviated as PLP.

For devices without power loss protection it is often true that writes are fast but fsync is slow. When fsync is slow then calling fsync more frequently in InnoDB will hurt performance.

Results from fio

I used this fio script to measure performance for writes for files opened with O_DIRECT. The test was run twice configuration for 5 minutes per run followed by a 5 minute sleep. This was repeated for 1, 2, 4, 8, 16 and 32 fio jobs but I only share results here for 1 job. The configurations tested were:

  • O_DIRECT without fsync, 16kb writes
  • O_DIRECT with an fsync per write, 16kb writes
  • O_DIRECT with an fdatasync per write, 16kb writes
  • O_DIRECT without fsync, 2M writes
  • O_DIRECT with an fsync per write, 2M writes
  • O_DIRECT with an fdatasync per write, 2M writes
Results from all tests are here. I did the test on several servers:
  • dell32
    • a large server I have at home. The SSD is a Crucial T500 2TB using ext-4 with discard enabled and Ubuntu 24.04. This is a consumer SSD. While the web claims it has PLP via capacitors the fsync latency for it was almost 1 millisecond.
  • gcp
    • a c3d-standard-30-lssd from the Google cloud with 2 local NVMe devices using SW RAID 0 and 1TB of Hyperdisk Balanced storage configured for 50,000 IOPs and 800MB/s of throughput. The OS is Ubuntu 24.04 and I repeated tests for both ext-4 and xfs, both with discard enabled. I was not able to determine the brand of the local NVMe devices.
  • hetz
    • an ax162-s from Hetzner with 2 local NVME devices using SW RAID 1. Via udiskctl status I learned the devices are Intel D7-P5520 (now Solidigm). These are datacenter SSDs and the web claims they have power loss protection. The OS is Ubuntu 24.04 and the drives use ext-4 without discard enabled. 
  • ser7
  • socket2
    • a 2-socket server I have at home. The SSD is a Samsung PM-9a3. This is an enterprise SSD with power loss protection. The OS is Ubuntu 24.04 and the drives use ext-4 with discard enabled.

Results: overview

This table lists fsync and fdatasync latency per server:

  • for servers with consumer SSDs (dell, ser7) the latency is much larger on the ser7 that uses a Samsung 990 Pro than on the dell that uses a Crucial T500. This is to be expected given that the T500 has PLP while the 990 Pro does not.
  • sync latency is much lower on servers with enterprise SSDs
  • sync latency after 2M writes is sometimes much larger than after 16kb writes
  • for the Google server with Hyperdisk Balanced storage the fdatasync latency was good but fsync latency was high. While with the local NVMe devices the latencies were larger than for enterprise SSDs but much smaller than for consumer SSDs.

— Sync latency in microseconds for sync after 16kb writes

dell    hetz    ser7    socket2

891.1   12.4    2974.2  1.6     fsync

447.4    9.8    2783.2  0.7     fdatasync

gcp

local devices           hyperdisk

ext-4   xfs             ext-4   xfs

56.2    39.5            738.1   635.0   fsync

28.1    29.0             46.8    46.0   fdatasync

— Sync latency in microseconds for sync after 2M writes

dell    hetz    ser7    socket2

980.1   58.2    5396.8  139.1   fsync

449.7   10.8    3508.2    2.2   fdatasync

gcp

local devices           hyperdisk

ext-4   xfs             ext-4   xfs

1020.4  916.8           821.2   778.9   fsync

 832.4  809.7            63.6    51.2   fdatasync

Results: dell

Summary:

  • Write throughput drops dramatically when there is an fsync or fdatasync per write because sync latency is large.
  • This servers uses a consumer SSD so high sync latency is expected

Legend:

  • w/s – writes/s
  • MB/s – MB written/s
  • sync – latency per sync (fsync or fdatasync)

16 KB writes

w/s     MB/s    sync    test

43400   646.6   0.0     no-sync

43500   648.5   0.0     no-sync

1083    16.1    891.1   fsync

1085    16.2    889.2   fsync

2100    31.3    447.4   fdatasync

2095    31.2    448.6   fdatasync

2 MB writes

w/s     MB/s    sync    test

2617    4992.5  0.0     no-sync

2360    4502.3  0.0     no-sync

727     1388.5  980.1   fsync

753     1436.2  942.5   fsync

1204    2297.4  449.7   fdatasync

1208    2306.0  446.9   fdatasync

Results: gcp

Summary

  • Local NVMe devices have lower sync latency and more throughput with and without a sync per write at low concurrency (1 fio job).
  • At higher concurrency (32 fio jobs), the Hyperdisk Balanced setup provides similar throughput to local NVMe and would do even better had I paid more to get more IOPs and throughput. Results don’t have nice formatting but are here for xfs on the local and Hyperdisk Balanced devices.
  • fsync latency is ~2X larger than fdatasync on the local devices and closer to 15X larger on the Hyperdisk Balanced setup. That difference is interesting. I wonder what the results are for Hyperdisk Extreme.

Legend:

  • w/s – writes/s
  • MB/s – MB written/s
  • sync – latency per sync (fsync or fdatasync)

— ext-4 and local devices

16 KB writes

w/s     MB/s    sync    test

10100   150.7   0.0     no-sync

10300   153.5   0.0     no-sync

6555    97.3    56.2    fsync

6607    98.2    55.1    fsync

8189    122.1   28.1    fdatasync

8157    121.1   28.2    fdatasync

2 MB writes

w/s     MB/s    sync    test

390     744.8   0.0     no-sync

390     744.8   0.0     no-sync

388     741.0   1020.4  fsync

388     741.0   1012.7  fsync

390     744.8   832.4   fdatasync

390     744.8   869.6   fdatasync

— xfs and local devices

16 KB writes

w/s     MB/s    sync    test

9866    146.9   0.0     no-sync

9730    145.0   0.0     no-sync

7421    110.6   39.5    fsync

7537    112.5   38.3    fsync

8100    121.1   29.0    fdatasync

8117    121.1   28.8    fdatasync

2 MB writes

w/s     MB/s    sync    test

390     744.8   0.0     no-sync

390     744.8   0.0     no-sync

389     743.9   916.8   fsync

389     743.9   919.1   fsync

390     744.8   809.7   fdatasync

390     744.8   806.5   fdatasync

— ext-4 and Hyperdisk Balanced

16 KB writes

w/s     MB/s    sync    test

2093    31.2    0.0     no-sync

2068    30.8    0.0     no-sync

804     12.0    738.1   fsync

798     11.9    740.6   fsync

1963    29.3    46.8    fdatasync

1922    28.6    49.0    fdatasync

2 MB writes

w/s     MB/s    sync    test

348     663.8   0.0     no-sync

367     701.0   0.0     no-sync

278     531.2   821.2   fsync

271     517.8   814.1   fsync

358     683.8   63.6    fdatasync

345     659.0   64.5    fdatasync

— xfs and Hyperdisk Balanced

16 KB writes

w/s     MB/s    sync    test

2033    30.3    0.0     no-sync

2004    29.9    0.0     no-sync

870     13.0    635.0   fsync

858     12.8    645.0   fsync

1787    26.6    46.0    fdatasync

1727    25.7    49.6    fdatasync

2 MB writes

w/s     MB/s    sync    test

343     655.2   0.0     no-sync

343     655.2   0.0     no-sync

267     511.2   778.9   fsync

268     511.2   774.7   fsync

347     661.8   51.2    fdatasync

336     642.8   54.4    fdatasync

Results: hetz

Summary

  • this has an enterprise SSD with excellent (low) sync latency

Legend:

  • w/s – writes/s
  • MB/s – MB written/s
  • sync – latency per sync (fsync or fdatasync)

16 KB writes

w/s     MB/s    sync    test

37700   561.7   0.0     no-sync

37500   558.9   0.0     no-sync

25200   374.8   12.4    fsync

25100   374.8   12.4    fsync

27600   411.0   0.0     fdatasync

27200   404.4   9.8     fdatasync

2 MB writes

w/s     MB/s    sync    test

1833    3497.1  0.0     no-sync

1922    3667.8  0.0     no-sync

1393    2656.9  58.2    fsync

1355    2585.4  59.6    fsync

1892    3610.6  10.8    fdatasync

1922    3665.9  10.8    fdatasync

Results: ser7

Summary:

  • this has a consumer SSD with high sync latency
  • results had much variance (see the 2MB results below) and results at higher concurrency. This is a great SSD, but not for my use case.

Legend:

  • w/s – writes/s
  • MB/s – MB written/s
  • sync – latency per sync (fsync or fdatasync)

16 KB writes

w/s     MB/s    sync    test

34000   506.4   0.0     no-sync

40200   598.9   0.0     no-sync

325     5.0     2974.2  fsync

333     5.1     2867.3  fsync

331     5.1     2783.2  fdatasync

330     5.0     2796.1  fdatasync

2 MB writes

w/s     MB/s    sync    test

362     691.4   0.0     no-sync

364     695.2   0.0     no-sync

67      128.7   10828.3 fsync

114     218.4   5396.8  fsync

141     268.9   3864.0  fdatasync

192     368.1   3508.2  fdatasync

Results: socket2

Summary:

  • this has an enterprise SSD with excellent (low) sync latency after small writes, but fsync latency after 2MB writes is much larger

Legend:

  • w/s – writes/s
  • MB/s – MB written/s
  • sync – latency per sync (fsync or fdatasync)

16 KB writes

w/s     MB/s    sync    test

49500   737.2   0.0     no-sync

49300   734.3   0.0     no-sync

44500   662.8   1.6     fsync

45400   676.2   1.5     fsync

46700   696.2   0.7     fdatasync

45200   674.2   0.7     fdatasync

2 MB writes

w/s     MB/s    sync    test

707     1350.4  0.0     no-sync

708     1350.4  0.0     no-sync

703     1342.8  139.1   fsync

703     1342.8  122.5   fsync

707     1350.4  2.2     fdatasync

707     1350.4  2.1     fdatasync

🔥 **What’s your take?**
Share your thoughts in the comments below!

#️⃣ **#SSDs #power #loss #protection #fsync #latency**

🕒 **Posted on**: 1767839702

🌟 **Want more?** Click here for more info! 🌟

By

Leave a Reply

Your email address will not be published. Required fields are marked *